Digital Induction Motor Model Based on the Finite Element Method

Author:

Bozek Pavol1ORCID,Krenicky Tibor2ORCID,Prajova Vanessa3

Affiliation:

1. Institute of Production Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia

2. Department of Technical Systems Design and Monitoring, Faculty of Manufacturing Technologies with a Seat in Prešov, Technical University of Košice, Bayerova 1, 080 01 Prešov, Slovakia

3. Institute of Industrial Engineering and Management, Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, J. Bottu 25, 917 24 Trnava, Slovakia

Abstract

This article presents the design of a drive system for robots and manipulators, which is based on the finite element method of an induction motor. The design process involves constructing a computer-aided design (CAD) model of the induction motor, which enables the generation of design documentation and control programs for computer numerical control (CNC) tools for manufacturing motor parts or conducting further research. A CAD model is developed for performing a finite element analysis of the motor in the SolidWorks software based on the popular AIR63V2 motor. The design of the motor’s housing, rotor, and stator is developed. Additionally, the electrical parameters of the motor are calculated using Ansys Electronic Suite—Maxwell RMxprt, utilizing the classical analytical theory of electrical machines and the equivalent magnetic circuit method. This takes into account such effects as the non-linearity of electrical steel, the non-sinusoidality of the magnetic flux in the gap, and the displacement of electric current in massive conductors. A complete model of an induction motor for research has been created, enabling the study of dependencies of speed and electromagnetic torque of an induction motor. The natural frequency of the rotor is calculated, which ranges from 922 Hz to 1015 Hz. The obtained values of calculations of natural oscillations of the CAD model of the motor can be used for motor diagnostics. Furthermore, the created project in the Ansys software can be utilized to design an induction motor with its own characteristics, optimized for specific tasks.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3