Response of Guobu Slope Displacement to Rainfall and Reservoir Water Level with Time-Series InSAR and Wavelet Analysis

Author:

Pang Lei1ORCID,Li Conghua1,Liu Dayuan1,Zhang Fengli2ORCID,Chen Bing3

Affiliation:

1. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China

Abstract

Reservoir bank landslides are a frequent phenomenon, and the stability of these landslides is affected by two essential factors: rainfall and reservoir level changes. Studying the response patterns of reservoir bank landslide movements to these variables is crucial in preventing their occurrence and mitigating their effects. To this end, this study employed 103 European Space Agency (ESA) Copernicus Sentinel-1 images and the SBAS-InSAR (small baseline subset interferometric synthetic aperture radar) technique to obtain a time series of the Guobu slope deformation from September 2015 to December 2019. The Guobu slope showed significant toppling damage. The satellite line of sight (LOS) detected a maximum subsidence rate of −447 mm/y (the negative sign indicates movement away from the satellite, i.e., subsidence) in the upper section of the slope. Subsequently, three wavelet tools were used to quantitatively analyze the effect of rainfall and reservoir water level on the deformation of the Guobu slope. The results demonstrate a positive correlation between rainfall and the deformation of the Guobu slope. Moreover, the deformation lags behind the rainfall by approximately 70 days. In contrast, the reservoir water level and the deformation of the Guobu slope exhibit an inverse relationship. The deformation of the leading edge of the slope body lags behind the reservoir level by approximately 19 days, while the middle and upper sections of the slope body, which have the most significant rate of variability, lag by about 80 days. Among these factors, rainfall plays a dominant role in the deformation of the Guobu slope, while reservoir levels play a synergistic role. The findings of this study highlight the importance of monitoring and understanding the impact of changes in rainfall and reservoir water levels on the stability of reservoir bank landslides. This understanding is crucial in preventing the occurrence of such landslides and minimizing their impact. The use of remote sensing techniques, together with wavelet analysis, enables the accurate and timely monitoring of the deformation of the Guobu slope, providing valuable insights for disaster warnings and disaster prevention and reduction efforts.

Funder

National Natural Science Foundation of China

Common Application Support Platform for Land Observation Satellites of China’s Civil Space Infrastructure

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3