In Vitro Analysis of Hemodynamics in the Ascending Thoracic Aorta: Sensitivity to the Experimental Setup

Author:

Mariotti Alessandro1ORCID,Vignali Emanuele2ORCID,Gasparotti Emanuele2ORCID,Morello Mario1ORCID,Singh Jaskaran1ORCID,Salvetti Maria Vittoria1ORCID,Celi Simona2ORCID

Affiliation:

1. Dipartimento di Ingegneria Civile ed Industriale, University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy

2. BioCardioLab —Heart Hospital, Fondazione Toscana G. Monasterio, Via Aurelia Sud, 54100 Massa, Italy

Abstract

We perform a stochastic sensitivity analysis of the experimental setup of a mock circulatory loop for in vitro hemodynamics analysis in the ascending thoracic aorta at a patient-specific level. The novelty of the work is that, for the first time, we provide a systematic sensitivity analysis of the effect of the inflow conditions, viz. the stroke volume, the cardiac cycle period, and the spatial distribution of the velocity in in-vitro experiments in a circulatory mock loop. We considered three different patient-specific geometries of the ascending thoracic aorta, viz. a healthy geometry, an aortic aneurysm, and a coarctation of the aorta. Three-dimensional-printed phantoms are inserted in a mock circulatory loop, and velocity and pressure measurements are carried out for the different setup conditions. The stochastic approach, performed using the generalized polynomial chaos, allows us to obtain continuous and accurate response surfaces in the parameter space, limiting the number of experiments. The main contributions of this work are that (i) the flow rate and pressure waveforms are mostly affected by the cardiac cycle period and the stroke volume, (ii) the impact of the spatial distribution of the inlet velocity profile is negligible, and (iii), from a practical viewpoint, this analysis confirms that in experiments it is also important to replicate the patient-specific inflow waveform, while the length of the pipe connecting the pump and the phantom of the aorta can be varied to comply with particular requirements as, for instance, those implied by the use of MRI in experiments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3