Analysis of Nutrient Composition, Rumen Degradation Characteristics, and Feeding Value of Chinese Rye Grass, Barley Grass, and Naked Oat Straw

Author:

Ma Yulin,Khan Muhammad ZahoorORCID,Liu Yanfang,Xiao Jianxin,Chen Xu,Ji Shoukun,Cao ZhijunORCID,Li Shengli

Abstract

The current study was designed to investigate the chemical composition, rumen degradation characteristics, and feeding value of three roughages commonly used in Asia as ruminant feed, including Chinese rye grass (CRG), barley grass (BG), and naked oat straw (NO). Four Holstein Friesian cows equipped with permanent rumen fistulas were chosen for experimental trials in the current study. The nylon bag method was carried out to measure the crude protein (CP), acid detergent fiber (ADF), ruminal degradability of dry matter (DM), and neutral detergent fiber (NDF). Our analysis revealed that the contents of CP in the CRG (9.0%) and BG (8.9%) were higher than in the NO (5.94%). The contents of NDF in the CRG (64.97%) and NO (63.83%) were lower than in the BG (67.33%), and the content of ADF in the CRG (37.03%) was lower than in the BG (37.93%) and NO (38.28%). The ED values of DM in the NO and CRG were significantly higher (p < 0.001) than in the BG. The effective degradability (ED) values of NDF were the highest in the CRG and lowest in the NO (p < 0.001). In addition, the ED values of ADF were the highest in the CRG and lowest in the BG (p < 0.001). The ED value of CP in the CRG was significantly higher than that in the BG and NO (p < 0.001). The estimated total digestible nutrients (TDN) (54.56%) and DM degradation rate (DDM) (60.06%) of the CRG were higher than those of BG and NO. In addition, the expected DM intake (DMI), estimated relative feed value (RFV), and estimated relative feed quality (RFQ) of the BG were lower than those of the CRG and NO. Altogether, based on our findings, we concluded that the nutritional quality, feeding value and effective rumen degradation rate of CRG were better than of BG and NO.

Funder

Construction of Industrial Technology System of Modern Agriculture

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3