Impact of Deficit Irrigation on Shallow Saline Groundwater Contribution and Sunflower Productivity in the Imperial Valley, California

Author:

Eltarabily Mohamed GalalORCID,Burke John M.ORCID,Bali Khaled M.ORCID

Abstract

Yield and production functions of sunflower (Helianthus annuus) were evaluated under full and deficit irrigation practices with the presence of shallow saline groundwater in a semi-arid region in the Imperial Valley of southern California, USA. A growing degree day (GDD) model was utilized to estimate the various growth stages and schedule irrigation events throughout the growing season. The crop was germinated and established using overhead irrigation prior to the use of a subsurface drip irrigation (SDI) system for the remainder of the growing season. Four irrigation treatments were implemented: full irrigation (100% full sunflower crop evapotranspiration, ETC), two reduced irrigation scenarios (95% ETC and 80% ETC), and a deficit irrigation scenario (65% ETC). The salinity of the irrigation water (EC) (Colorado River water) was nearly constant at 1.13 dS·m−1 during the growing season. The depth to groundwater and groundwater salinity (ECGW) were continuously monitored in five 3 m deep observation wells. Depth to groundwater fluctuated slightly under the full and reduced irrigation treatments, but drastically increased under deficit irrigation, particularly toward the end of the growing season. Estimates of ECGW ranged from 7.34 to 12.62 dS·m−1. The distribution of soil electrical conductivity (ECS) and soil matric potential were monitored within the active root zone (120 cm) at selected locations in each of the four treatments. By the end of the experiment, soil salinity (ECS) across soil depths ranged from 1.80 to 6.18 dS·m−1. The estimated groundwater contribution to crop evapotranspiration was 9.03 cm or approximately 16.3% of the ETC of the fully irrigated crop. The relative yields were 91.8%, 82.4%, and 83.5% for the reduced (95% and 80% ETC) and deficit (65% ETC) treatments, respectively, while the production function using applied irrigation water (IW) was: yield = 0.0188 × (IW)2 − 15.504 × IW + 4856.8. Yield reduction in response to water stress was attributed to a significant reduction in both seed weight and the number of seed produced resulting in overall average yields of 2048.9, 1879.9, 1688.1, and 1710.3 kg·ha−1 for the full, both reduced, and deficit treatments, respectively. The yield response factor, ky, was 0.63 with R2 = 0.745 and the irrigation water use efficiencies (IWUE) were 3.70, 3.57, 3.81, and 4.75 kg·ha−1·mm−1 for the full, reduced, and deficit treatments, respectively. Our results indicate that sunflowers can sustain the implemented 35% deficit irrigation with root water uptake from shallow groundwater in arid regions with a less than 20% reduction in yield.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Sunflower Hybrid Seed Production in Californiahttps://anrcatalog.ucanr.edu/Details.aspx?itemNo=8638

2. Crop Yield Response to Water;Steduto,2012

3. Hybrid Selection and Production Practices;Miller,2007

4. Sunflower: Overview

5. Sunflower Genetics from Ancestors to Modern Hybrids—A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3