Nutrient Removal Potential of Headwater Wetlands in Coastal Plains of Alabama, USA

Author:

Isik Sabahattin1ORCID,Haas Henrique1ORCID,Kalin Latif1ORCID,Hantush Mohamed M.2ORCID,Nietch Christopher3ORCID

Affiliation:

1. College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA

2. U.S. EPA Center for Environmental Solutions and Emergency Response, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA

3. U.S. EPA Center for Environmental Measurement and Modeling, 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA

Abstract

Headwater streams drain over 70% of the land in the United States with headwater wetlands covering 6.59 million hectares. These ecosystems are important landscape features in the southeast United States, with underlying effects on ecosystem health, water yield, nutrient cycling, biodiversity, and water quality. However, little is known about the relationship between headwater wetlands’ nutrient function (i.e., nutrient load removal (RL) and removal efficiency (ER)) and their physical characteristics. Here, we investigate this relationship for 44 headwater wetlands located within the Upper Fish River watershed (UFRW) in coastal Alabama. To accomplish this objective, we apply the process-based watershed model SWAT (Soil and Water Assessment Tool) to generate flow and nutrient loadings to each study wetland and subsequently quantify the wetland-level nutrient removal efficiencies using the process-based wetland model WetQual. Results show that the calculated removal efficiencies of the headwater wetlands in the UFRW are 75–84% and 27–35% for nitrate (NO3−) and phosphate (PO4+), respectively. The calculated nutrient load removals are highly correlated with the input loads, and the estimated PO4+ ERshows a significant decreasing trend with increased input loadings. The relationship between NO3− ER and wetland physical characteristics such as area, volume, and residence time is statistically insignificant (p > 0.05), while for PO4+, the correlation is positive and statistically significant (p < 0.05). On the other hand, flashiness (flow pulsing) and baseflow index (fraction of inflow that is coming from baseflow) have a strong effect on NO3− removal but not on PO4+ removal. Modeling results and statistical analysis point toward denitrification and plant uptake as major NO3− removal mechanisms, whereas plant uptake, diffusion, and settling of sediment-bound P were the main mechanisms for PO4+ removal. Additionally, the computed nutrient ER is higher during the driest year of the simulated period compared to during the wettest year. Our findings are in line with global-level studies and offer new insights into wetland physical characteristics affecting nutrient removal efficiency and the importance of headwater wetlands in mitigating water quality deterioration in coastal areas. The regression relationships for NO3− and PO4+ load removals in the selected 44 wetlands are then used to extrapolate nutrient load removals to 348 unmodeled non-riverine and non-riparian wetlands in the UFRW (41% of UFRW drains to them). Results show that these wetlands remove 51–61% of the NO3− and 5–10% of the PO4+ loading they receive from their respective drainage areas. Due to geographical proximity and physiographic similarity, these results can be scaled up to the coastal plains of Alabama and Northwest Florida.

Funder

Environmental Protection Agency

National Institute of Food and Agriculture

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3