Autonomous Population Regulation Using a Multi-Agent System in a Prey–Predator Model That Integrates Cellular Automata and the African Buffalo Optimization Metaheuristic

Author:

Almonacid BorisORCID,Aspée Fabián,Yimes Francisco

Abstract

This research focused on the resolution of a dynamic prey–predator spatial model. This model has six life cycles and simulates a theoretical population of prey and predators. Cellular automata represent a set of prey and predators. The cellular automata move in a discrete space in a 2d lattice that has the shape of a torus. African buffaloes represent the predators, and the grasslands represent the prey in the African savanna. Each buffalo moves in the discrete space using the proper motion equation of the African buffalo optimization metaheuristic. Two types of approaches were made with five experiments each. The first approach was the development of a dynamic prey–predator spatial model using the movement of the African buffalo optimization metaheuristic. The second approach added the characteristic of regulating the population of buffaloes using autonomous multi-agents that interact with the model dynamic prey–predator spatial model. According to the obtained results, it was possible to adjust and maintain a balance of prey and predators during a determined period using multi-agents, therefore preventing predators from destroying an entire population of prey in the coexistence space.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference59 articles.

1. Nature-Inspired Metaheuristic Algorithms;Yang,2010

2. A new metaheuristic bat-inspired algorithm;Yang,2010

3. African Buffalo Optimization (ABO): A New Meta-Heuristic Algorithm;Odili;J. Adv. Appl. Sci.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3