Abstract
We study the selection problem, namely that of computing the ith order statistic of n given elements. Here we offer a data structure called selectable sloppy heap that handles a dynamic version in which upon request (i) a new element is inserted or (ii) an element of a prescribed quantile group is deleted from the data structure. Each operation is executed in constant time—and is thus independent of n (the number of elements stored in the data structure)—provided that the number of quantile groups is fixed. This is the first result of this kind accommodating both insertion and deletion in constant time. As such, our data structure outperforms the soft heap data structure of Chazelle (which only offers constant amortized complexity for a fixed error rate 0 < ε ≤ 1 / 2 ) in applications such as dynamic percentile maintenance. The design demonstrates how slowing down a certain computation can speed up the data structure. The method described here is likely to have further impact in the field of data structure design in extending asymptotic amortized upper bounds to same formula asymptotic worst-case bounds.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Finding a mediocre player;Discrete Applied Mathematics;2021-04
2. Lazy Search Trees;2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS);2020-11
3. Editorial: Special Issue on Efficient Data Structures;Algorithms;2019-07-05
4. Finding a Mediocre Player;Lecture Notes in Computer Science;2019