Comparative Analysis of High-Resolution Soil Moisture Simulations from the Soil, Vegetation, and Snow (SVS) Land Surface Model Using SAR Imagery Over Bare Soil

Author:

Dabboor Mohammed,Sun Leqiang,Carrera Marco,Friesen Matthew,Merzouki Amine,McNairn Heather,Powers Jarrett,Bélair StéphaneORCID

Abstract

Soil moisture is a key variable in Earth systems, controlling the exchange of water andenergy between land and atmosphere. Thus, understanding its spatiotemporal distribution andvariability is important. Environment and Climate Change Canada (ECCC) has developed a newland surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS landsurface scheme features sophisticated parameterizations of hydrological processes, including watertransport through the soil. It has been shown to provide more accurate simulations of the temporaland spatial distribution of soil moisture compared to the current operational land surface scheme.Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, wesimulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme overan experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps wereproduced between May and November 2015. Simulated soil moisture values were compared withestimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture andAgri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic ApertureRadar (SAR) imagery. Statistical analysis of the results showed an overall promising performanceof the SVS land surface scheme in simulating soil moisture values at high resolution scale.Investigation of the SVS output was conducted both independently of the soil texture, and as afunction of the soil texture. The SVS model tends to perform slightly better over coarser texturedsoils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulatedSVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. TheRoot Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. Theunbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore,results show an Index of Agreement (IA) between the simulated and the derived soil moisturealways higher than 0.90.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3