An Information Entropy-Based Modeling Method for the Measurement System

Author:

Kong Li,Pan HaoORCID,Li Xuewei,Ma Shuangbao,Xu QiORCID,Zhou KaiboORCID

Abstract

Measurement is a key method to obtain information from the real world and is widely used in human life. A unified model of measurement systems is critical to the design and optimization of measurement systems. However, the existing models of measurement systems are too abstract. To a certain extent, this makes it difficult to have a clear overall understanding of measurement systems and how to implement information acquisition. Meanwhile, this also leads to limitations in the application of these models. Information entropy is a measure of information or uncertainty of a random variable and has strong representation ability. In this paper, an information entropy-based modeling method for measurement system is proposed. First, a modeling idea based on the viewpoint of information and uncertainty is described. Second, an entropy balance equation based on the chain rule for entropy is proposed for system modeling. Then, the entropy balance equation is used to establish the information entropy-based model of the measurement system. Finally, three cases of typical measurement units or processes are analyzed using the proposed method. Compared with the existing modeling approaches, the proposed method considers the modeling problem from the perspective of information and uncertainty. It focuses on the information loss of the measurand in the transmission process and the characterization of the specific role of the measurement unit. The proposed model can intuitively describe the processing and changes of information in the measurement system. It does not conflict with the existing models of the measurement system, but can complement the existing models of measurement systems, thus further enriching the existing measurement theory.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3