A Rapid Terrestrial Laser Scanning Method for Coastal Erosion Studies: A Case Study at Freeport, Texas, USA

Author:

Xiong Lin,Wang Guoquan,Bao Yan,Zhou Xin,Wang Kuan,Liu Hanlin,Sun Xiaohan,Zhao Ruibin

Abstract

Terrestrial laser scanning (TLS) has become a powerful data acquisition technique for high-resolution high-accuracy topographic and morphological studies. Conventional static TLS surveys require setting up numerous reflectors (tie points) in the field for point clouds registration and georeferencing. To reduce surveying time and simplify field operational tasks, we have developed a rapid TLS surveying method that requires only one reflector in the field. The method allows direct georeferencing of point clouds from individual scans to an East–North–Height (ENH) coordinate system tied to a stable geodetic reference frame. TLS datasets collected at a segment of the beach–dune–wetland area in Freeport, Texas, USA are used to evaluate the performance of the rapid surveying method by comparing with kinematic GPS measurements. The rapid surveying method uses two GPS units mounted on the scanner and a reflector for calculating the northing angle of the scanner’s own coordinate system (SOCS). The Online Positioning User Service (OPUS) is recommended for GPS data processing. According to this study, OPUS Rapid-Static (OPUS-RS) solutions retain 1–2 cm root mean square (RMS) accuracy in the horizontal directions and 2–3 cm accuracy in the vertical direction for static observational sessions of approximately 30 min in the coastal region of Texas, USA. The rapid TLS surveys can achieve an elevation accuracy (RMS) of approximately 3–5 cm for georeferenced points and 2–3 cm for digital elevation models (DEMs). The elevation errors superimposed into the TLS surveying points roughly fit a normal distribution. The proposed TLS surveying method is particularly useful for morphological mapping over time in coastal regions, where strong wind and soft sand prohibit reflectors from remaining strictly stable for a long period. The theories and results presented in this paper are beneficial to researchers who frequently utilize TLS datasets in their research, but do not have opportunities to be involved in field data acquisition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3