Author:
Xiong Lin,Wang Guoquan,Bao Yan,Zhou Xin,Wang Kuan,Liu Hanlin,Sun Xiaohan,Zhao Ruibin
Abstract
Terrestrial laser scanning (TLS) has become a powerful data acquisition technique for high-resolution high-accuracy topographic and morphological studies. Conventional static TLS surveys require setting up numerous reflectors (tie points) in the field for point clouds registration and georeferencing. To reduce surveying time and simplify field operational tasks, we have developed a rapid TLS surveying method that requires only one reflector in the field. The method allows direct georeferencing of point clouds from individual scans to an East–North–Height (ENH) coordinate system tied to a stable geodetic reference frame. TLS datasets collected at a segment of the beach–dune–wetland area in Freeport, Texas, USA are used to evaluate the performance of the rapid surveying method by comparing with kinematic GPS measurements. The rapid surveying method uses two GPS units mounted on the scanner and a reflector for calculating the northing angle of the scanner’s own coordinate system (SOCS). The Online Positioning User Service (OPUS) is recommended for GPS data processing. According to this study, OPUS Rapid-Static (OPUS-RS) solutions retain 1–2 cm root mean square (RMS) accuracy in the horizontal directions and 2–3 cm accuracy in the vertical direction for static observational sessions of approximately 30 min in the coastal region of Texas, USA. The rapid TLS surveys can achieve an elevation accuracy (RMS) of approximately 3–5 cm for georeferenced points and 2–3 cm for digital elevation models (DEMs). The elevation errors superimposed into the TLS surveying points roughly fit a normal distribution. The proposed TLS surveying method is particularly useful for morphological mapping over time in coastal regions, where strong wind and soft sand prohibit reflectors from remaining strictly stable for a long period. The theories and results presented in this paper are beneficial to researchers who frequently utilize TLS datasets in their research, but do not have opportunities to be involved in field data acquisition.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献