CFD Modeling of Effluent Discharges: A Review of Past Numerical Studies

Author:

Mohammadian Abdolmajid,Kheirkhah Gildeh HosseinORCID,Nistor Ioan

Abstract

Effluent discharge mixing and dispersion have been studied for many decades. Studies began with experimental investigations of geometrical and concentration characteristics of the jets in the near-field zone. More robust experiments were performed using Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) systems starting in the 20th century, which led to more accurate measurement and analysis of jet behavior. The advancement of computing systems over the past two decades has led to the development of various numerical methods, which have been implemented in Computational Fluid Dynamics (CFD) codes to predict fluid motion and characteristics. Numerical modeling of mixing and dispersion is increasingly preferred over laboratory experiments of effluent discharges in both academia and industry. More computational resources and efficient numerical schemes have helped increase the popularity of using CFD models in jet and plume modeling. Numerous models have been developed over time, each with different capabilities to facilitate the investigation of all aspects of effluent discharges. Among these, Reynolds-averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES) are at present the most popular CFD models employing effluent discharge modeling. This paper reviews state-of-the-art numerical modeling studies for different types and configurations of discharges, including positively and negatively buoyant discharges, which have mostly been completed over the past two decades. The numerical results of these studies are summarized and critically discussed in this review. Various aspects related to the impact of turbulence models, such as k-ε and Launder-Reece-Rodi (LRR) models, are reviewed herein. RANS and LES models are reviewed, and implications for the simulation of jet and plume mixing are discussed to develop a reference for future researchers performing numerical investigations on jet mixing and dispersion.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3