The Mineral Fertilizer-Dependent Chemical Parameters of Soil Acidification under Field Conditions

Author:

Tkaczyk Przemysław,Mocek-Płóciniak AgnieszkaORCID,Skowrońska Monika,Bednarek Wiesław,Kuśmierz Sebastian,Zawierucha Elżbieta

Abstract

Soil acidification in agroecosystems is a natural process that could be accelerated, mainly by the inappropriate application of mineral fertilizers, or prevented, by sustainable management practices. On the basis of a three-year field study in a grassland agroecosystem, the impact of different rates of fertilization with nitrogen (N), phosphorus (P), and potassium (K) on soil chemical parameters related to soil acidity was evaluated. It was found that high-rate fertilization with ammonium nitrate accelerated the soil acidification process, which was additionally intensified by the application of superphosphate and potassium salt. The sum of exchangeable base cations, the values of base saturation and hydrolytic acidity in the soil reflected the interactions between the applied NPK-fertilizer levels. Considering chemical parameters related to soil acidity studied in this experiment, it seems that the best strategies for mitigating soil acidification in grasslands are reducing nitrate leaching, changing fertilizer types and increasing the input of base cations.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3