Abstract
The issue of unintentional islanding in grid interconnection still remains a challenge in grid-connected, Distributed Generation System (DGS). This study discusses the general overview of popular islanding detection methods. Because of the various Distributed Generation (DG) types, their sizes connected to the distribution networks, and, due to the concern associated with out-of-phase reclosing, anti-islanding continues to be an issue, where no clear solution exists. The passive islanding detection technique is the simplest method to detect the islanding condition which compares the existing parameters of the system having some threshold values. This study first presents an auto-ground approach, which is based on the application of three-phase, short-circuit to the islanded distribution system just to reclose and re-energize the system. After that, the data mining-decision tree algorithm is implemented on a typical distribution system with multiple DGs. The results from both of the techniques have been accomplished and verified by determining the Non-Detection Zone (NDZ), which satisfies the IEEE standards of 2 s execution time. From the analysis, it is concluded that the decision tree approach is effective and highly accurate to detect the islanding state in DGs. These simulations in detail compare the old and new methods, clearly highlighting the progress in the field of islanding detection.
Funder
EnergizeNepal Project, Royal Norwegian Embassy at Nepal
Subject
Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献