Author:
Luo Xiaojin,Shi Weihua,Yu Haoming,Xie Zhaoyang,Li Kunyi,Cui Yue
Abstract
Developing a simple and direct approach for interfacing a sensor and a target analyte is of great interest for fields such as medical diagnosis, threat detection, food quality control, and environmental monitoring. Gloves provide a unique interface for sensing applications. Here, we show for the first time the development of wearable carbon nanotube (CNT)-based amperometric biosensors painted onto gloves as a new sensing platform, used here for the determination of lactate. Three sensor types were studied, configured as: two CNT electrodes; one CNT electrode, and an Ag/AgCl electrode, and two CNT electrodes and an Ag/AgCl electrode. The sensors are constructed by painting the electrodes using CNT or Ag/AgCl inks. By immobilizing lactate oxidase onto the CNT-based working electrodes, the sensors show sensitive detections of lactate. Comparison of sensor performance shows that a combination of CNT and Ag/AgCl is necessary for highly sensitive detection. We anticipate that these findings could open exciting avenues for fundamental studies of wearable bioelectronics, as well as practical applications in fields such as healthcare and defense.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献