Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders

Author:

Hsu Wei-Chun,Sugiarto Tommy,Lin Yi-Jia,Yang Fu-Chi,Lin Zheng-YiORCID,Sun Chi-Tien,Hsu Chun-Lung,Chou Kuan-Nien

Abstract

The aim of this study was to conduct a comprehensive analysis of the placement of multiple wearable sensors for the purpose of analyzing and classifying the gaits of patients with neurological disorders. Seven inertial measurement unit (IMU) sensors were placed at seven locations: the lower back (L5) and both sides of the thigh, distal tibia (shank), and foot. The 20 subjects selected to participate in this study were separated into two groups: stroke patients (11) and patients with neurological disorders other than stroke (brain concussion, spinal injury, or brain hemorrhage) (9). The temporal parameters of gait were calculated using a wearable device, and various features and sensor configurations were examined to establish the ideal accuracy for classifying different groups. A comparison of the various methods and features for classifying the three groups revealed that a combination of time domain and gait temporal feature-based classification with the Multilayer Perceptron (MLP) algorithm outperformed the other methods of feature-based classification. The classification results of different sensor placements revealed that the sensor placed on the shank achieved higher accuracy than the other sensor placements (L5, foot, and thigh). The placement-based classification of the shank sensor achieved 89.13% testing accuracy with the Decision Tree (DT) classifier algorithm. The results of this study indicate that the wearable IMU device is capable of differentiating between the gait patterns of healthy patients, patients with stroke, and patients with other neurological disorders. Moreover, the most favorable results were reported for the classification that used the combination of time domain and gait temporal features as the model input and the shank location for sensor placement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3