Intraretinal Layer Segmentation Using Cascaded Compressed U-Nets

Author:

Yadav Sunil KumarORCID,Kafieh RaheleORCID,Zimmermann Hanna Gwendolyn,Kauer-Bonin JosefORCID,Nouri-Mahdavi KourosORCID,Mohammadzadeh Vahid,Shi Lynn,Kadas Ella Maria,Paul Friedemann,Motamedi SeyedamirhoseinORCID,Brandt Alexander Ulrich

Abstract

Reliable biomarkers quantifying neurodegeneration and neuroinflammation in central nervous system disorders such as Multiple Sclerosis, Alzheimer’s dementia or Parkinson’s disease are an unmet clinical need. Intraretinal layer thicknesses on macular optical coherence tomography (OCT) images are promising noninvasive biomarkers querying neuroretinal structures with near cellular resolution. However, changes are typically subtle, while tissue gradients can be weak, making intraretinal segmentation a challenging task. A robust and efficient method that requires no or minimal manual correction is an unmet need to foster reliable and reproducible research as well as clinical application. Here, we propose and validate a cascaded two-stage network for intraretinal layer segmentation, with both networks being compressed versions of U-Net (CCU-INSEG). The first network is responsible for retinal tissue segmentation from OCT B-scans. The second network segments eight intraretinal layers with high fidelity. At the post-processing stage, we introduce Laplacian-based outlier detection with layer surface hole filling by adaptive non-linear interpolation. Additionally, we propose a weighted version of focal loss to minimize the foreground–background pixel imbalance in the training data. We train our method using 17,458 B-scans from patients with autoimmune optic neuropathies, i.e., multiple sclerosis, and healthy controls. Voxel-wise comparison against manual segmentation produces a mean absolute error of 2.3 μm, outperforming current state-of-the-art methods on the same data set. Voxel-wise comparison against external glaucoma data leads to a mean absolute error of 2.6 μm when using the same gold standard segmentation approach, and 3.7 μm mean absolute error in an externally segmented data set. In scans from patients with severe optic atrophy, 3.5% of B-scan segmentation results were rejected by an experienced grader, whereas this was the case in 41.4% of B-scans segmented with a graph-based reference method. The validation results suggest that the proposed method can robustly segment macular scans from eyes with even severe neuroretinal changes.

Funder

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Federal Ministry for Economic Affairs and Energy

National Institutes of Health

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3