Assessment of Geometric Distortion in Six Clinical Scanners Using a 3D-Printed Grid Phantom

Author:

Jafar Maysam,Jafar Yassir,Dean ChristopherORCID,Miquel Marc

Abstract

A cost-effective regularly structured three-dimensional (3D) printed grid phantom was developed to enable the quantification of machine-related magnetic resonance (MR) distortion. This phantom contains reference features, “point-like” objects, or vertices, which resulted from the intersection of mesh edges in 3D space. 3D distortions maps were computed by comparing the locations of corresponding features in both MR and computer tomography (CT) data sets using normalized cross correlation. Results are reported for six MRI scanners at both 1.5 T and 3.0 T field strengths within our institution. Mean Euclidean distance error for all MR volumes in this study, was less than 2 mm. The maximum detected error for the six scanners ranged from 2.4 mm to 6.9 mm. The conclusions in this study agree well with previous studies that indicated that MRI is quite accurate near the centre of the field but is more spatially inaccurate toward the edges of the magnetic field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3