Weakly Supervised SVM-Enhanced SAM Pipeline for Stone-by-Stone Segmentation of the Masonry of the Loire Valley Castles

Author:

Lucho Stuardo1ORCID,Treuillet Sylvie1ORCID,Desquesnes Xavier1,Leconge Remy1,Brunetaud Xavier2

Affiliation:

1. Laboratoire PRISME, Université d’Orléans, 45100 Orléans, France

2. LaMé, Université d’Orléans, 45100 Orléans, France

Abstract

The preservation of historical monuments presents a formidable challenge, particularly in monitoring the deterioration of building materials over time. Chateau de Chambord’s facade suffers from common issues such as flaking and spalling, which require meticulous stone and joint mapping from experts manually for restoration efforts. Advancements in computer vision have allowed machine-learning models to help in the automatic segmentation process. In this research, a custom architecture defined as SAM-SVM is proposed, to perform stone segmentation, based on the Segment Anything Model (SAM) and Support Vector Machines (SVM). By exploiting the zero-shot learning capabilities of SAM and its customizable input parameters, we obtain segmentation mask for stones and joints, which are then classified using SVM. Two more SAMs (three in total) are used, depending on how many stones are left to segment. Through extensive experimentation and evaluation, supported by computer vision methods, the proposed architecture achieves a Dice coefficient of 85%. Our results highlight the potential of SAM in cultural heritage conservation, providing a scalable and efficient solution for stone segmentation in historic monuments. This research contributes valuable insights and methodologies to the ongoing conservation efforts of Château de Chambord and could be extrapolated to other monuments.

Funder

Le ministère d’ l’Enseignement supérieur et de la Recherche

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3