An Innovative Faster R-CNN-Based Framework for Breast Cancer Detection in MRI

Author:

Raimundo João Nuno Centeno1ORCID,Fontes João Pedro Pereira2ORCID,Gonzaga Mendes Magalhães Luís2ORCID,Guevara Lopez Miguel Angel12ORCID

Affiliation:

1. Instituto Politécnico de Setúbal, Escola Superior de Tecnologia de Setúbal, 2914-508 Setúbal, Portugal

2. Centro ALGORITMI, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

Abstract

Replacing lung cancer as the most commonly diagnosed cancer globally, breast cancer (BC) today accounts for 1 in 8 cancer diagnoses and a total of 2.3 million new cases in both sexes combined. An estimated 685,000 women died from BC in 2020, corresponding to 16% or 1 in every 6 cancer deaths in women. BC represents a quarter of a total of cancer cases in females and by far the most commonly diagnosed cancer in women in 2020. However, when detected in the early stages of the disease, treatment methods have proven to be very effective in increasing life expectancy and, in many cases, patients fully recover. Several medical imaging modalities, such as X-rays Mammography (MG), Ultrasound (US), Computer Tomography (CT), Magnetic Resonance Imaging (MRI), and Digital Tomosynthesis (DT) have been explored to support radiologists/physicians in clinical decision-making workflows for the detection and diagnosis of BC. In this work, we propose a novel Faster R-CNN-based framework to automate the detection of BC pathological Lesions in MRI. As a main contribution, we have developed and experimentally (statistically) validated an innovative method improving the “breast MRI preprocessing phase” to select the patient’s slices (images) and associated bounding boxes representing pathological lesions. In this way, it is possible to create a more robust training (benchmarking) dataset to feed Deep Learning (DL) models, reducing the computation time and the dimension of the dataset, and more importantly, to identify with high accuracy the specific regions (bounding boxes) for each of the patient’s images, in which a possible pathological lesion (tumor) has been identified. As a result, in an experimental setting using a fully annotated dataset (released to the public domain) comprising a total of 922 MRI-based BC patient cases, we have achieved, as the most accurate trained model, an accuracy rate of 97.83%, and subsequently, applying a ten-fold cross-validation method, a mean accuracy on the trained models of 94.46% and an associated standard deviation of 2.43%.

Funder

Instituto Politécnico de Setúbal, Portugal

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference35 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Sung;CA Cancer J. Clin.,2021

2. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study;Heer;Lancet Glob Health,2020

3. World Health Organization (2023, June 16). Cancer, Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.

4. World Health Organization (2023, June 16). Breast Cancer, Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.

5. Global challenges in breast cancer detection and treatment;Barrios;Breast,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3