Semantic Segmentation in Large-Size Orthomosaics to Detect the Vegetation Area in Opuntia spp. Crop

Author:

Duarte-Rangel Arturo1,Camacho-Bello César1ORCID,Cornejo-Velazquez Eduardo2ORCID,Clavel-Maqueda Mireya2ORCID

Affiliation:

1. Artificial Intelligence Laboratory, Universidad Politécnica de Tulancingo, Tulancingo 43629, Hidalgo, Mexico

2. Research Center on Technology of Information and Systems, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico

Abstract

This study focuses on semantic segmentation in crop Opuntia spp. orthomosaics; this is a significant challenge due to the inherent variability in the captured images. Manual measurement of Opuntia spp. vegetation areas can be slow and inefficient, highlighting the need for more advanced and accurate methods. For this reason, we propose to use deep learning techniques to provide a more precise and efficient measurement of the vegetation area. Our research focuses on the unique difficulties posed by segmenting high-resolution images exceeding 2000 pixels, a common problem in generating orthomosaics for agricultural monitoring. The research was carried out on a Opuntia spp. cultivation located in the agricultural region of Tulancingo, Hidalgo, Mexico. The images used in this study were obtained by drones and processed using advanced semantic segmentation architectures, including DeepLabV3+, UNet, and UNet Style Xception. The results offer a comparative analysis of the performance of these architectures in the semantic segmentation of Opuntia spp., thus contributing to the development and improvement of crop analysis techniques based on deep learning. This work sets a precedent for future research applying deep learning techniques in agriculture.

Publisher

MDPI AG

Reference38 articles.

1. Resolution, G.A. (2024, April 09). Transforming our World: The 2030 Agenda for Sustainable Development. UN Doc. A/RES/70/1. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication.

2. Sáenz, C., and Berger, H. (2006). Utilización Agroindustrial del Nopal, Food and Agriculture Organization of the United Nations.

3. Opuntia spp.: Characterization and benefits in chronic diseases;Oxidative Med. Cell. Longev.,2017

4. Louhaichi, M., Nefzaoui, A., and Guevara, J.C. (2017). Cactus Ecosystem Goods and Services, Organización de las Naciones Unidas para la Alimentación y la Agricultura.

5. Servicio de Administración Agroalimentaria y Pesquera (SIAP) (2023). Panorama Agroalimentario 2023, Secretaría de Agricultura y Desarrollo Rural.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3