Deep Learning Network for Speckle De-Noising in Severe Conditions

Author:

Tahon Marie,Montrésor Silvio,Picart PascalORCID

Abstract

Digital holography is well adapted to measure any modifications related to any objects. The method refers to digital holographic interferometry where the phase change between two states of the object is of interest. However, the phase images are corrupted by the speckle decorrelation noise. In this paper, we address the question of de-noising in holographic interferometry when phase data are polluted with speckle noise. We present a new database of phase fringe images for the evaluation of de-noising algorithms in digital holography. In this database, the simulated phase maps present characteristics such as the size of the speckle grains and the noise level of the fringes, which can be controlled by the generation process. Deep neural network architectures are trained with sets of phase maps having differentiated parameters according to the features. The performances of the new models are evaluated with a set of test fringe patterns whose characteristics are representative of severe conditions in terms of input SNR and speckle grain size. For this, four metrics are considered, which are the PSNR, the phase error, the perceived quality index and the peak-to-valley ratio. Results demonstrate that the models trained with phase maps with a diversity of noise characteristics lead to improving their efficiency, their robustness and their generality on phase maps with severe noise.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3