Enhancing Face Identification Using Local Binary Patterns and K-Nearest Neighbors

Author:

,Guo Chunsheng

Abstract

The human face plays an important role in our social interaction, conveying people’s identity. Using the human face as a key to security, biometric passwords technology has received significant attention in the past several years due to its potential for a wide variety of applications. Faces can have many variations in appearance (aging, facial expression, illumination, inaccurate alignment and pose) which continue to cause poor ability to recognize identity. The purpose of our research work is to provide an approach that contributes to resolve face identification issues with large variations of parameters such as pose, illumination, and expression. For provable outcomes, we combined two algorithms: (a) robustness local binary pattern (LBP), used for facial feature extractions; (b) k-nearest neighbor (K-NN) for image classifications. Our experiment has been conducted on the CMU PIE (Carnegie Mellon University Pose, Illumination, and Expression) face database and the LFW (Labeled Faces in the Wild) dataset. The proposed identification system shows higher performance, and also provides successful face similarity measures focus on feature extractions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Reference20 articles.

1. Face Recognition with Local Binary Patterns;Ahonen,2004

2. Face Recognition: Where We Are and Where To Go From Here

3. One to Many 3D Face Recognition Enhanced Through k-d-Tree Based Spatial Access;Abate,2005

4. The FERET evaluation methodology for face-recognition algorithms

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3