Design and Comparison of Image Hashing Methods: A Case Study on Cork Stopper Unique Identification

Author:

Fitas RicardoORCID,Rocha BernardoORCID,Costa ValterORCID,Sousa ArmandoORCID

Abstract

Cork stoppers were shown to have unique characteristics that allow their use for authentication purposes in an anti-counterfeiting effort. This authentication process relies on the comparison between a user’s cork image and all registered cork images in the database of genuine items. With the growth of the database, this one-to-many comparison method becomes lengthier and therefore usefulness decreases. To tackle this problem, the present work designs and compares hashing-assisted image matching methods that can be used in cork stopper authentication. The analyzed approaches are the discrete cosine transform, wavelet transform, Radon transform, and other methods such as difference hash and average hash. The most successful approach uses a 1024-bit hash length and difference hash method providing a 98% accuracy rate. By transforming the image matching into a hash matching problem, the approach presented becomes almost 40 times faster when compared to the literature.

Funder

Fundação para a Ciência e a Tecnologia

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretación de gestos en tiempo real empleando GestureNet en un robot social;Jornadas de Automática;2024-07-12

2. Active Object Learning for intelligent social robots;Engineering Applications of Artificial Intelligence;2024-01

3. Image Hash Layer Triggered CNN Framework for Wafer Map Failure Pattern Retrieval and Classification;ACM Transactions on Knowledge Discovery from Data;2023-12-19

4. A Novel Framework for Constructing Multimodal Knowledge Graph from MuSe-CaR Video Reviews;2023 IEEE 17th International Conference on Semantic Computing (ICSC);2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3