ControlFace: Feature Disentangling for Controllable Face Swapping

Author:

Zhang Xuehai1ORCID,Zhou Wenbo1,Liu Kunlin1,Tang Hao2,Zhang Zhenyu3,Zhang Weiming1,Yu Nenghai1

Affiliation:

1. Department of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China

2. Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA

3. Suzhou Campus, Nanjing University, Suzhou 215163, China

Abstract

Face swapping is an intriguing and intricate task in the field of computer vision. Currently, most mainstream face swapping methods employ face recognition models to extract identity features and inject them into the generation process. Nonetheless, such methods often struggle to effectively transfer identity information, which leads to generated results failing to achieve a high identity similarity to the source face. Furthermore, if we can accurately disentangle identity information, we can achieve controllable face swapping, thereby providing more choices to users. In pursuit of this goal, we propose a new face swapping framework (ControlFace) based on the disentanglement of identity information. We disentangle the structure and texture of the source face, encoding and characterizing them in the form of feature embeddings separately. According to the semantic level of each feature representation, we inject them into the corresponding feature mapper and fuse them adequately in the latent space of StyleGAN. Owing to such disentanglement of structure and texture, we are able to controllably transfer parts of the identity features. Extensive experiments and comparisons with state-of-the-art face swapping methods demonstrate the superiority of our face swapping framework in terms of transferring identity information, producing high-quality face images, and controllable face swapping.

Funder

Natural Science Foundation of China

Key Research and Development program of Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3