Abstract
The Union-Retire CCA (UR-CCA) algorithm started a new paradigm for connected components analysis. Instead of using directed tree structures, UR-CCA focuses on connectivity. This algorithmic change leads to a reduction in required memory, with no end-of-row processing overhead. In this paper we describe a hardware architecture based on UR-CCA and its realisation on an FPGA. The memory bandwidth and pipelining challenges of hardware UR-CCA are analysed and resolved. It is shown that up to 36% of memory resources can be saved using the proposed architecture. This translates directly to a smaller device for an FPGA implementation.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Blob Detection and Labelling;Design for Embedded Image Processing on FPGAs;2023-09-05