Algorithms for 3D Particles Characterization Using X-Ray Microtomography in Proppant Crush Test

Author:

Safonov IliaORCID,Yakimchuk Ivan,Abashkin Vladimir

Abstract

We present image processing algorithms for a new technique of ceramic proppant crush resistance characterization. To obtain the images of the proppant material before and after the test we used X-ray microtomography. We propose a watershed-based unsupervised algorithm for segmentation of proppant particles, as well as a set of parameters for the characterization of 3D particle size, shape, and porosity. An effective approach based on central geometric moments is described. The approach is used for calculation of particles’ form factor, compactness, equivalent ellipsoid axes lengths, and lengths of projections to these axes. Obtained grain size distribution and crush resistance fit the results of conventional test measured by sieves. However, our technique has a remarkable advantage over traditional laboratory method since it allows to trace the destruction at the level of individual particles and their fragments; it grants to analyze morphological features of fines. We also provide an example describing how the approach can be used for verification of statistical hypotheses about the correlation between particles’ parameters and their crushing under load.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference62 articles.

1. Reservoir Stimulation;Economides,2000

2. API RP 19D: Measuring the Long-Term Conductivity of Proppants,2008

3. Principles of Computerized Tomographic Imaging;Kak,2001

4. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT;Buzug,2008

5. X-ray nanotomography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3