Analysis of Real-Time Face-Verification Methods for Surveillance Applications

Author:

Perez-Montes Filiberto1,Olivares-Mercado Jesus1ORCID,Sanchez-Perez Gabriel1,Benitez-Garcia Gibran2ORCID,Prudente-Tixteco Lidia1ORCID,Lopez-Garcia Osvaldo1

Affiliation:

1. Instituto Politecnico Nacional, ESIME Culhuacan, Mexico City 04440, Mexico

2. Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Face Recognition Based on Multiple Feature Domains;2024 20th IEEE International Colloquium on Signal Processing & Its Applications (CSPA);2024-03-01

2. An Efficient Facial Verification System for Surveillance that Automatically Selects a Lightweight CNN Method and Utilizes Super-Resolution Images;Advances in Computational Intelligence;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3