Atmospheric Correction for High-Resolution Shape from Shading on Mars

Author:

Hess MarcelORCID,Tenthoff MoritzORCID,Wohlfarth KayORCID,Wöhler Christian

Abstract

Digital Elevation Models (DEMs) of planet Mars are crucial for many remote sensing applications and for landing site characterization of rover missions. Shape from Shading (SfS) is known to work well as a complementary method to greatly enhance the quality of photogrammetrically obtained DEMs of planetary surfaces with respect to the effective resolution and the overall accuracy. In this work, we extend our previous lunar shape and albedo from shading framework by embedding the Hapke photometric reflectance model in an atmospheric model such that it is applicable to Mars. Compared to previous approaches, the proposed method is capable of directly estimating the atmospheric parameters from a given scene without the need for external data, and assumes a spatially varying albedo. The DEMs are generated from imagery of the Context Camera (CTX) onboard the Mars Reconnaissance Orbiter (MRO) and are validated for clear and opaque atmospheric conditions. We analyze the necessity of using atmospheric compensation depending on the atmospheric conditions. For low optical depths, the Hapke model without an atmospheric component is still applicable to the Martian surface. For higher optical depths, atmospheric compensation is required to obtain good quality DEMs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3