Automatic Switching of Electric Locomotive Power in Railway Neutral Sections Using Image Processing

Author:

Mcineka Christopher Thembinkosi1,Pillay Nelendran2ORCID,Moorgas Kevin2,Maharaj Shaveen2ORCID

Affiliation:

1. Transnet, 121 Jan Moolman Street, Vryheid 3100, South Africa

2. Department of Electronic and Computer Engineering, Durban University of Technology, Steve Biko Campus, Durban 4001, South Africa

Abstract

This article presents a computer vision-based approach to switching electric locomotive power supplies as the vehicle approaches a railway neutral section. Neutral sections are defined as a phase break in which the objective is to separate two single-phase traction supplies on an overhead railway supply line. This separation prevents flashovers due to high voltages caused by the locomotives shorting both electrical phases. The typical system of switching traction supplies automatically employs the use of electro-mechanical relays and induction magnets. In this paper, an image classification approach is proposed to replace the conventional electro-mechanical system with two unique visual markers that represent the ‘Open’ and ‘Close’ signals to initiate the transition. When the computer vision model detects either marker, the vacuum circuit breakers inside the electrical locomotive will be triggered to their respective positions depending on the identified image. A Histogram of Oriented Gradient technique was implemented for feature extraction during the training phase and a Linear Support Vector Machine algorithm was trained for the target image classification. For the task of image segmentation, the Circular Hough Transform shape detection algorithm was employed to locate the markers in the captured images and provided cartesian plane coordinates for segmenting the Object of Interest. A signal marker classification accuracy of 94% with 75 objects per second was achieved using a Linear Support Vector Machine during the experimental testing phase.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3