Exocentric and Egocentric Views for Biomedical Data Analytics in Virtual Environments—A Usability Study

Author:

Ng Jing1,Arness David1,Gronowski Ashlee1,Qu Zhonglin2ORCID,Lau Chng Wei2ORCID,Catchpoole Daniel34ORCID,Nguyen Quang Vinh5ORCID

Affiliation:

1. School of Psychology, Western Sydney University, Penrith, NSW 2750, Australia

2. School of Computer, Data and Mathematical Sciences, Western Sydney University, Penrith, NSW 2751, Australia

3. Tumour Bank, Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia

4. School of Computer Science, Faculty of Engineering and IT, The University of Technology Sydney, Ultimo, NSW 2007, Australia

5. School of Computer, Data and Mathematical Sciences and MARCS Institute, Western Sydney University, Penrith, NSW 2751, Australia

Abstract

Biomedical datasets are usually large and complex, containing biological information about a disease. Computational analytics and the interactive visualisation of such data are essential decision-making tools for disease diagnosis and treatment. Oncology data models were observed in a virtual reality environment to analyse gene expression and clinical data from a cohort of cancer patients. The technology enables a new way to view information from the outside in (exocentric view) and the inside out (egocentric view), which is otherwise not possible on ordinary displays. This paper presents a usability study on the exocentric and egocentric views of biomedical data visualisation in virtual reality and their impact on usability on human behaviour and perception. Our study revealed that the performance time was faster in the exocentric view than in the egocentric view. The exocentric view also received higher ease-of-use scores than the egocentric view. However, the influence of usability on time performance was only evident in the egocentric view. The findings of this study could be used to guide future development and refinement of visualisation tools in virtual reality.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3