Abstract
Despite the success of hand-crafted features in computer visioning for many years, nowadays, this has been replaced by end-to-end learnable features that are extracted from deep convolutional neural networks (CNNs). Whilst CNNs can learn robust features directly from image pixels, they require large amounts of samples and extreme augmentations. On the contrary, hand-crafted features, like SIFT, exhibit several interesting properties as they can provide local rotation invariance. In this work, a novel scheme combining the strengths of SIFT descriptors with CNNs, namely SIFT-CNN, is presented. Given a single-channel image, one SIFT descriptor is computed for every pixel, and thus, every pixel is represented as an M-dimensional histogram, which ultimately results in an M-channel image. Thus, the SIFT image is generated from the SIFT descriptors for all the pixels in a single-channel image, while at the same time, the original spatial size is preserved. Next, a CNN is trained to utilize these M-channel images as inputs by operating directly on the multiscale SIFT images with the regular convolution processes. Since these images incorporate spatial relations between the histograms of the SIFT descriptors, the CNN is guided to learn features from local gradient information of images that otherwise can be neglected. In this manner, the SIFT-CNN implicitly acquires a local rotation invariance property, which is desired for problems where local areas within the image can be rotated without affecting the overall classification result of the respective image. Some of these problems refer to indirect immunofluorescence (IIF) cell image classification, ground-based all-sky image-cloud classification and human lip-reading classification. The results for the popular datasets related to the three different aforementioned problems indicate that the proposed SIFT-CNN can improve the performance and surpasses the corresponding CNNs trained directly on pixel values in various challenging tasks due to its robustness in local rotations. Our findings highlight the importance of the input image representation in the overall efficiency of a data-driven system.
Funder
European Union and Greek national funds
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Reference76 articles.
1. SURF: Speeded Up Robust Features;Bay,2006
2. BRIEF: Binary Robust Independent Elementary Features;Hutchison,2010
3. Distinctive Image Features from Scale-Invariant Keypoints
4. Histograms of oriented gradients for human detection;Dalal;Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),2005
5. All About VLAD;Arandjelovic;Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition,2013
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献