Whole CNS 3D Cryo-Fluorescence Tomography Shows CSF Clearance along Nasal Lymphatics, Spinal Nerves, and Lumbar/Sacral Lymph Nodes

Author:

Stokes Christian1,White Eli F1,Toddes Steve1,Bens Nicole2,Kulkarni Praveen2ORCID,Ferris Craig F2ORCID

Affiliation:

1. EMIT Imaging, Baltimore, MD 21201, USA

2. Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA

Abstract

Unwanted proteins and metabolic waste in cerebral spinal fluid are cleared from the brain by meningeal and nasal lymphatics and the perineural sheath of cranial nerves; however, the distribution and clearance of cerebral spinal fluid (CSF) along the subarachnoid space of the entire spinal cord is not fully understood. Cryo-fluorescence tomography (CFT) was used to follow the movement of tracers from the ventricular system of the brain down through the meningeal lining of the spinal cord and out to the spinal lymphatic nodes. Isoflurane-anesthetized mice were infused into the lateral cerebroventricle with 5.0 µL of quantum dots [QdotR 605 ITKTM amino (PEG)] over two mins. Mice were allowed to recover (ca 2–3 min) and remained awake and ambulatory for 5, 15, 30, 60, and 120 min after which they were euthanized, and the entire intact body was frozen at −80°. The entire mouse was sectioned, and white light and fluorescent images were captured after each slice to produce high resolution three-dimensional volumes. Tracer appeared throughout the ventricular system and central canal of the spinal cord and the entire subarachnoid space of the CNS. A signal could be visualized in the nasal cavity, deep cervical lymph nodes, thoracic lymph nodes, and more superficial submandibular lymph nodes as early as 15 min post infusion. A fluorescent signal could be visualized along the dorsal root ganglia and down the proximal extension of the spinal nerves of the thoracic and lumbar segments at 30 min. There was a significant accumulation of tracer in the lumbar and sacral lymph nodes between 15–60 min. The dense fluorescent signal in the thoracic vertebrae noted at 5- and 15-min post infusion was significantly reduced by 30 min. Indeed, all signals in the spinal cord were ostensibly absent by 120 min, except for trace amounts in the coccyx. The brain still had some residual signal at 120 min. These data show that Qdots with a hydrodynamic diameter of 16–20 nm rapidly clear from the brain of awake mice. These data also clearly demonstrate the rapid distribution and efflux of traces along a major length of the vertebral column and the potential contribution of the spinal cord in the clearance of brain waste.

Funder

Emit Imaging

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3