Abstract
The majority of the senior population lives alone at home. Falls can cause serious injuries, such as fractures or head injuries. These injuries can be an obstacle for a person to move around and normally practice his daily activities. Some of these injuries can lead to a risk of death if not handled urgently. In this paper, we propose a fall detection system for elderly people based on their postures. The postures are recognized from the human silhouette which is an advantage to preserve the privacy of the elderly. The effectiveness of our approach is demonstrated on two well-known datasets for human posture classification and three public datasets for fall detection, using a Support-Vector Machine (SVM) classifier. The experimental results show that our method can not only achieves a high fall detection rate but also a low false detection.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献