Multi-Fundus Diseases Classification Using Retinal Optical Coherence Tomography Images with Swin Transformer V2

Author:

Li Zhenwei1,Han Yanqi1,Yang Xiaoli1

Affiliation:

1. College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China

Abstract

Fundus diseases cause damage to any part of the retina. Untreated fundus diseases can lead to severe vision loss and even blindness. Analyzing optical coherence tomography (OCT) images using deep learning methods can provide early screening and diagnosis of fundus diseases. In this paper, a deep learning model based on Swin Transformer V2 was proposed to diagnose fundus diseases rapidly and accurately. In this method, calculating self-attention within local windows was used to reduce computational complexity and improve its classification efficiency. Meanwhile, the PolyLoss function was introduced to further improve the model’s accuracy, and heat maps were generated to visualize the predictions of the model. Two independent public datasets, OCT 2017 and OCT-C8, were applied to train the model and evaluate its performance, respectively. The results showed that the proposed model achieved an average accuracy of 99.9% on OCT 2017 and 99.5% on OCT-C8, performing well in the automatic classification of multi-fundus diseases using retinal OCT images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference46 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BathNet: A network to classification of fundus and contrast images using label transfer and multi-branch transformer;Biomedical Signal Processing and Control;2024-09

2. Detection of Multi-Class Multi-Label Ophthalmological Diseases in Retinal Fundus Images Using Machine Learning;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3