Efficient Rank-Based Diffusion Process with Assured Convergence

Author:

Guimarães Pedronette Daniel CarlosORCID,Pascotti Valem Lucas,Latecki Longin Jan

Abstract

Visual features and representation learning strategies experienced huge advances in the previous decade, mainly supported by deep learning approaches. However, retrieval tasks are still performed mainly based on traditional pairwise dissimilarity measures, while the learned representations lie on high dimensional manifolds. With the aim of going beyond pairwise analysis, post-processing methods have been proposed to replace pairwise measures by globally defined measures, capable of analyzing collections in terms of the underlying data manifold. The most representative approaches are diffusion and ranked-based methods. While the diffusion approaches can be computationally expensive, the rank-based methods lack theoretical background. In this paper, we propose an efficient Rank-based Diffusion Process which combines both approaches and avoids the drawbacks of each one. The obtained method is capable of efficiently approximating a diffusion process by exploiting rank-based information, while assuring its convergence. The algorithm exhibits very low asymptotic complexity and can be computed regionally, being suitable to outside of dataset queries. An experimental evaluation conducted for image retrieval and person re-ID tasks on diverse datasets demonstrates the effectiveness of the proposed approach with results comparable to the state-of-the-art.

Funder

Fulbright Commission Brazil

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised affinity learning based on manifold analysis for image retrieval: A survey;Computer Science Review;2024-08

2. Feature Fusion-Based Re-Ranking for Home Textile Image Retrieval;Mathematics;2024-07-11

3. Manifold Learning for Brain Tumor MRI Image Retrieval and Classification;2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE);2023-12-04

4. pyUDLF: A Python Framework for Unsupervised Distance Learning Tasks;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

5. Regression by Re-Ranking;Pattern Recognition;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3