Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices

Author:

Manu DanielORCID,Tshakwanda Petro MushidiORCID,Lin YouzuoORCID,Jiang Weiwen,Yang Lei

Abstract

Seismic full wave inversion (FWI) is a widely used non-linear seismic imaging method used to reconstruct subsurface velocity images, however it is time consuming, has high computational cost and depend heavily on human interaction. Recently, deep learning has accelerated it’s use in several data-driven techniques, however most deep learning techniques suffer from overfitting and stability issues. In this work, we propose an edge computing-based data-driven inversion technique based on supervised deep convolutional neural network to accurately reconstruct the subsurface velocities. Deep learning based data-driven technique depends mostly on bulk data training. In this work, we train our deep convolutional neural network (DCN) (UNet and InversionNet) on the raw seismic data and their corresponding velocity models during the training phase to learn the non-linear mapping between the seismic data and velocity models. The trained network is then used to estimate the velocity models from new input seismic data during the prediction phase. The prediction phase is performed on a resource-constrained edge device such as Raspberry Pi. Raspberry Pi provides real-time and on-device computational power to execute the inference process. In addition, we demonstrate robustness of our models to perform inversion in the presence on noise by performing both noise-aware and no-noise training and feeding the resulting trained models with noise at different signal-to-noise (SNR) ratio values. We make great efforts to achieve very feasible inference times on the Raspberry Pi for both models. Specifically, the inference times per prediction for UNet and InversionNet models on Raspberry Pi were 22 and 4 s respectively whilst inference times for both models on the GPU were 2 and 18 s which are very comparable. Finally, we have designed a user-friendly interactive graphical user interface (GUI) to automate the model execution and inversion process on the Raspberry Pi.

Funder

Los Alamos National Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing IoT Security with Asynchronous Federated Learning for Seismic Inversion;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09

2. GraphGANFed: A Federated Generative Framework for Graph-Structured Molecules Towards Efficient Drug Discovery;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2024-03

3. Enhancing COVID-19 Detection: An Xception-Based Model with Advanced Transfer Learning from X-ray Thorax Images;Journal of Imaging;2024-02-29

4. SE-DO: Navigating the 6G Frontier with Scalable and Efficient DevOps for Intelligent Agents Optimization;2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC);2024-01-08

5. Regularized Full-Waveform Inversion With Shearlet Transform and Total Generalized Variation;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3