4-Band Multispectral Images Demosaicking Combining LMMSE and Adaptive Kernel Regression Methods

Author:

Hounsou NorbertORCID,Mahama Amadou T. Sanda,Gouton Pierre

Abstract

In recent years, multispectral imaging systems are considerably expanding with a variety of multispectral demosaicking algorithms. The most crucial task is setting up an optimal multispectral demosaicking algorithm in order to reconstruct the image with less error from the raw image of a single sensor. In this paper, we presented a four-band multispectral filter array (MSFA) with the dominant blue band and a multispectral demosaicking algorithm that combines the linear minimum mean square error (LMMSE) and the adaptive kernel regression methods. To estimate the missing blue bands, we used the LMMSE algorithm and for the other spectral bands, the directional gradient method, which relies on the estimated blue bands. The adaptive kernel regression is then applied to each spectral band for their update without persistent artifacts. The experiment results demonstrate that our proposed method outperforms other existing approaches both visually and quantitatively in terms of peak signal-to-noise-ratio (PSNR), structural similarity index (SSIM) and root mean square error (RMSE).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference22 articles.

1. The design and evaluation of a generic method for generating mosaicked multispectral filter arrays

2. Compressive Sensing Multi-Spectral Demosaicing from Single Sensor Architecture;Aggarwal;Proceedings of the 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP),2014

3. Multispectral demosaicking using adaptive kernel upsampling;Monno;Proceedings of the 2011 18th IEEE International Conference on Image Processing,2011

4. Adaptive Multispectral Demosaicking Based on Frequency-Domain Analysis of Spectral Correlation

5. Multispectral Demosaicing Using Pseudo-Panchromatic Image

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3