Enhancing Embedded Object Tracking: A Hardware Acceleration Approach for Real-Time Predictability

Author:

Zhang Mingyang1ORCID,Van Beeck Kristof1ORCID,Goedemé Toon1ORCID

Affiliation:

1. PSI-EAVISE Research Group, Department of Electrical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium

Abstract

While Siamese object tracking has witnessed significant advancements, its hard real-time behaviour on embedded devices remains inadequately addressed. In many application cases, an embedded implementation should not only have a minimal execution latency, but this latency should ideally also have zero variance, i.e., be predictable. This study aims to address this issue by meticulously analysing real-time predictability across different components of a deep-learning-based video object tracking system. Our detailed experiments not only indicate the superiority of Field-Programmable Gate Array (FPGA) implementations in terms of hard real-time behaviour but also unveil important time predictability bottlenecks. We introduce dedicated hardware accelerators for key processes, focusing on depth-wise cross-correlation and padding operations, utilizing high-level synthesis (HLS). Implemented on a KV260 board, our enhanced tracker exhibits not only a speed up, with a factor of 6.6, in mean execution time but also significant improvements in hard real-time predictability by yielding 11 times less latency variation as compared to our baseline. A subsequent analysis of power consumption reveals our approach’s contribution to enhanced power efficiency. These advancements underscore the crucial role of hardware acceleration in realizing time-predictable object tracking on embedded systems, setting new standards for future hardware–software co-design endeavours in this domain.

Funder

Chinese Scholarship Council

Flemish Innovation agency VLAIO

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3