Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning

Author:

Molnár Tamás1ORCID,Király Géza2

Affiliation:

1. Forest Research Institute, Department of Forest Ecology and Silviculture, University of Sopron, Bajcsy-Zsilinszky u 4, 9400 Sopron, Hungary

2. Department of Surveying, Geoinformatics and Remote Sensing, University of Sopron, Bajcsy-Zsilinszky u 4, 9400 Sopron, Hungary

Abstract

Forest damage has become more frequent in Hungary in the last decades, and remote sensing offers a powerful tool for monitoring them rapidly and cost-effectively. A combined approach was developed to utilise high-resolution ESA Sentinel-2 satellite imagery and Google Earth Engine cloud computing and field-based forest inventory data. Maps and charts were derived from vegetation indices (NDVI and Z∙NDVI) of satellite images to detect forest disturbances in the Hungarian study site for the period of 2017–2020. The NDVI maps were classified to reveal forest disturbances, and the cloud-based method successfully showed drought and frost damage in the oak-dominated Nagyerdő forest of Debrecen. Differences in the reactions to damage between tree species were visible on the index maps; therefore, a random forest machine learning classifier was applied to show the spatial distribution of dominant species. An accuracy assessment was accomplished with confusion matrices that compared classified index maps to field-surveyed data, demonstrating 99.1% producer, 71% user, and 71% total accuracies for forest damage and 81.9% for tree species. Based on the results of this study and the resilience of Google Earth Engine, the presented method has the potential to be extended to monitor all of Hungary in a faster, more accurate way using systematically collected field-data, the latest satellite imagery, and artificial intelligence.

Funder

Ministry of Innovation and Technology of Hungary

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3