A Deep-Learning Model for Real-Time Red Palm Weevil Detection and Localization

Author:

Alsanea MajedORCID,Habib Shabana,Khan Noreen Fayyaz,Alsharekh Mohammed F.ORCID,Islam MuhammadORCID,Khan SherozORCID

Abstract

Background and motivation: Over the last two decades, particularly in the Middle East, Red Palm Weevils (RPW, Rhynchophorus ferruginous) have proved to be the most destructive pest of palm trees across the globe. Problem: The RPW has caused considerable damage to various palm species. The early identification of the RPW is a challenging task for good date production since the identification will prevent palm trees from being affected by the RPW. This is one of the reasons why the use of advanced technology will help in the prevention of the spread of the RPW on palm trees. Many researchers have worked on finding an accurate technique for the identification, localization and classification of the RPW pest. This study aimed to develop a model that can use a deep-learning approach to identify and discriminate between the RPW and other insects living in palm tree habitats using a deep-learning technique. Researchers had not applied deep learning to the classification of red palm weevils previously. Methods: In this study, a region-based convolutional neural network (R-CNN) algorithm was used to detect the location of the RPW in an image by building bounding boxes around the image. A CNN algorithm was applied in order to extract the features to enclose with the bounding boxes—the selection target. In addition, these features were passed through the classification and regression layers to determine the presence of the RPW with a high degree of accuracy and to locate its coordinates. Results: As a result of the developed model, the RPW can be quickly detected with a high accuracy of 100% in infested palm trees at an early stage. In the Al-Qassim region, which has thousands of farms, the model sets the path for deploying an efficient, low-cost RPW detection and classification technology for palm trees.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3