Endoscopic Image Enhancement: Wavelet Transform and Guided Filter Decomposition-Based Fusion Approach

Author:

Moghtaderi Shiva1,Yaghoobian Omid1,Wahid Khan A.1ORCID,Lukong Kiven Erique2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

2. Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada

Abstract

Endoscopies are helpful for examining internal organs, including the gastrointestinal tract. The endoscope device consists of a flexible tube to which a camera and light source are attached. The diagnostic process heavily depends on the quality of the endoscopic images. That is why the visual quality of endoscopic images has a significant effect on patient care, medical decision-making, and the efficiency of endoscopic treatments. In this study, we propose an endoscopic image enhancement technique based on image fusion. Our method aims to improve the visual quality of endoscopic images by first generating multiple sub images from the single input image which are complementary to one another in terms of local and global contrast. Then, each sub layer is subjected to a novel wavelet transform and guided filter-based decomposition technique. To generate the final improved image, appropriate fusion rules are utilized at the end. A set of upper gastrointestinal tract endoscopic images were put to the test in studies to confirm the efficacy of our strategy. Both qualitative and quantitative analyses show that the proposed framework performs better than some of the state-of-the-art algorithms.

Funder

The New Frontiers in Research Fund Exploration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3