Developing Forest Cover Composites through a Combination of Landsat-8 Optical and Sentinel-1 SAR Data for the Visualization and Extraction of Forested Areas

Author:

Sharma Ram,Hara Keitarou,Tateishi Ryutaro

Abstract

Mapping the distribution of forested areas and monitoring their spatio-temporal changes are necessary for the conservation and management of forests. This paper presents two new image composites for the visualization and extraction of forest cover. By exploiting the Landsat-8 satellite-based multi-temporal and multi-spectral reflectance datasets, the Forest Cover Composite (FCC) was designed in this research. The FCC is an RGB (red, green, blue) color composite made up of short-wave infrared reflectance and green reflectance, specially selected from the day when the Normalized Difference Vegetation Index (NDVI) is at a maximum, as the red and blue bands, respectively. The annual mean NDVI values are used as the green band. The FCC is designed in such a way that the forested areas appear greener than other vegetation types, such as grasses and shrubs. On the other hand, the croplands and barren lands are usually seen as red and water/snow is seen as blue. However, forests may not necessarily be greener than other perennial vegetation. To cope with this problem, an Enhanced Forest Cover Composite (EFCC) was designed by combining the annual median backscattering intensity of the VH (vertical transmit, horizontal receive) polarization data from the Sentinel-1 satellite with the green term of the FCC to suppress the green component (mean NDVI values) of the FCC over the non-forested vegetative areas. The performances of the FCC and EFCC were evaluated for the discrimination and classification of forested areas all over Japan with the support of reference data. The FCC and EFCC provided promising results, and the high-resolution forest map newly produced in the research provided better accuracy than the extant MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Type product (MCD12Q1) in Japan. The composite images proposed in the research are expected to improve forest monitoring activities in other regions as well.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3