Efficient Retrieval of Images with Irregular Patterns Using Morphological Image Analysis: Applications to Industrial and Healthcare Datasets

Author:

Zhang Jiajun1ORCID,Cosma Georgina1ORCID,Bugby Sarah2ORCID,Watkins Jason3

Affiliation:

1. Department of Computer Science, School of Science, Loughborough University, Loughborough LE11 3TT, UK

2. Department of Physics, School of Science, Loughborough University, Loughborough LE11 3TT, UK

3. Railston & Co., Ltd., Nottingham NG7 2TU, UK

Abstract

Image retrieval is the process of searching and retrieving images from a datastore based on their visual content and features. Recently, much attention has been directed towards the retrieval of irregular patterns within industrial or healthcare images by extracting features from the images, such as deep features, colour-based features, shape-based features, and local features. This has applications across a spectrum of industries, including fault inspection, disease diagnosis, and maintenance prediction. This paper proposes an image retrieval framework to search for images containing similar irregular patterns by extracting a set of morphological features (DefChars) from images. The datasets employed in this paper contain wind turbine blade images with defects, chest computerised tomography scans with COVID-19 infections, heatsink images with defects, and lake ice images. The proposed framework was evaluated with different feature extraction methods (DefChars, resized raw image, local binary pattern, and scale-invariant feature transforms) and distance metrics to determine the most efficient parameters in terms of retrieval performance across datasets. The retrieval results show that the proposed framework using the DefChars and the Manhattan distance metric achieves a mean average precision of 80% and a low standard deviation of ±0.09 across classes of irregular patterns, outperforming alternative feature–metric combinations across all datasets. Our proposed ImR framework performed better (by 8.71%) than Super Global, a state-of-the-art deep-learning-based image retrieval approach across all datasets.

Funder

School of Science at Loughborough University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference87 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3