The VISIONE Video Search System: Exploiting Off-the-Shelf Text Search Engines for Large-Scale Video Retrieval

Author:

Amato GiuseppeORCID,Bolettieri PaoloORCID,Carrara FabioORCID,Debole FrancaORCID,Falchi FabrizioORCID,Gennaro ClaudioORCID,Vadicamo LuciaORCID,Vairo ClaudioORCID

Abstract

This paper describes in detail VISIONE, a video search system that allows users to search for videos using textual keywords, the occurrence of objects and their spatial relationships, the occurrence of colors and their spatial relationships, and image similarity. These modalities can be combined together to express complex queries and meet users’ needs. The peculiarity of our approach is that we encode all information extracted from the keyframes, such as visual deep features, tags, color and object locations, using a convenient textual encoding that is indexed in a single text retrieval engine. This offers great flexibility when results corresponding to various parts of the query (visual, text and locations) need to be merged. In addition, we report an extensive analysis of the retrieval performance of the system, using the query logs generated during the Video Browser Showdown (VBS) 2019 competition. This allowed us to fine-tune the system by choosing the optimal parameters and strategies from those we tested.

Funder

Tuscany Region, Italy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Will VISIONE Remain Competitive in Lifelog Image Search?;Proceedings of the 7th Annual ACM Workshop on the Lifelog Search Challenge;2024-06-10

2. Evaluating Performance and Trends in Interactive Video Retrieval: Insights From the 12th VBS Competition;IEEE Access;2024

3. VISIONE 5.0: Enhanced User Interface and AI Models for VBS2024;Lecture Notes in Computer Science;2024

4. VISIONE for newbies: an easier-to-use video retrieval system;20th International Conference on Content-based Multimedia Indexing;2023-09-20

5. Interactive video retrieval in the age of effective joint embedding deep models: lessons from the 11th VBS;Multimedia Systems;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3