Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders

Author:

Behrouzi Sasha1ORCID,Dix Marcel2,Karampanah Fatemeh1ORCID,Ates Omer1ORCID,Sasidharan Nissy1ORCID,Chandna Swati1,Vu Binh1

Affiliation:

1. Applied Data Science and Analytics, SRH University, 69123 Heidelberg, Germany

2. Industrial Data Analytics, ABB Corporate Research, 68526 Ladenburg, Germany

Abstract

Reliable functionality in anomaly detection in thermal image datasets is crucial for defect detection of industrial products. Nevertheless, achieving reliable functionality is challenging, especially when datasets are image sequences captured during equipment runtime with a smooth transition from healthy to defective images. This causes contamination of healthy training data with defective samples. Anomaly detection methods based on autoencoders are susceptible to a slight violation of a clean training dataset and lead to challenging threshold determination for sample classification. This paper indicates that combining anomaly scores leads to better threshold determination that effectively separates healthy and defective data. Our research results show that our approach helps to overcome these challenges. The autoencoder models in our research are trained with healthy images optimizing two loss functions: mean squared error (MSE) and structural similarity index measure (SSIM). Anomaly score outputs are used for classification. Three anomaly scores are applied: MSE, SSIM, and kernel density estimation (KDE). The proposed method is trained and tested on the 32 × 32-sized thermal images, including one contaminated dataset. The model achieved the following average accuracies across the datasets: MSE, 95.33%; SSIM, 88.37%; and KDE, 92.81%. Using a combination of anomaly scores could assist in solving a low classification accuracy. The use of KDE improves performance when healthy training data are contaminated. The MSE+ and SSIM+ methods, as well as two parameters to control quantitative anomaly localization using SSIM, are introduced.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3