Radiofrequency Echographic Multispectrometry (REMS): A New Option in the Assessment Bone Status in Adults with Osteogenesis Imperfecta

Author:

Caffarelli Carla1ORCID,Al Refaie Antonella1,Mondillo Caterina1,Versienti Alessandro1,Baldassini Leonardo1,De Vita Michela1,Tomai Pitinca Maria Dea1,Gonnelli Stefano1

Affiliation:

1. Division of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy

Abstract

This study aimed to estimate the utility of the Radiofrequency Echographic Multispectrometry (REMS) approach in the assessment of bone mineral density (BMD) in subjects with osteogenesis imperfecta (OI). In 41 subjects (40.5 ± 18.7 years) with OI and in 36 healthy controls, we measured BMD at the lumbar spine (LS-BMD), femoral neck (FN-BMD) and total hip (TH-BMD), employing a dual-energy X-ray absorptiometry tool. Additionally, REMS scans were also performed at the lumbar and femoral sites. The presence and number of reported fractures were assessed in the study population. Patients characterized by a history of fragility fractures represented 84.5% of the study population. OI subjects showed significantly reduced BMD values both at the level of the lumbar spine and the femoral subregions (p < 0.01) compared to healthy controls when performed using both the DXA and the REMS method. Dividing OI patients on the basis of the Sillence classification, no differences were found between the LS-BMD values carried out using the DXA technique between the OI type I group and OI Type III and IV groups. On the contrary, the OI Type III and IV groups presented significantly lower values of both Trabecular Bone Score (TBS) and LS-BMD through REMS with respect to OI type I patients (p < 0.05). Based on the data of this study, it is possible to conclude that even the new REMS assessment, which does not use ionizing radiation, represents an excellent method for studying the bone status in subjects affected by OI.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3