Classification of Cocoa Beans by Analyzing Spectral Measurements Using Machine Learning and Genetic Algorithm

Author:

Ayikpa Kacoutchy Jean1ORCID,Gouton Pierre1,Mamadou Diarra1,Ballo Abou Bakary12

Affiliation:

1. Laboratoire Imagerie et Vision Artificielle (ImViA), Université de Bourgogne, 21000 Dijon, France

2. Laboratoire de Mécanique et Information (LaMI), Université Felix Houphouët-Boigny, Abidjan 22 BP 801, Côte d’Ivoire

Abstract

The quality of cocoa beans is crucial in influencing the taste, aroma, and texture of chocolate and consumer satisfaction. High-quality cocoa beans are valued on the international market, benefiting Ivorian producers. Our study uses advanced techniques to evaluate and classify cocoa beans by analyzing spectral measurements, integrating machine learning algorithms, and optimizing parameters through genetic algorithms. The results highlight the critical importance of parameter optimization for optimal performance. Logistic regression, support vector machines (SVM), and random forest algorithms demonstrate a consistent performance. XGBoost shows improvements in the second generation, followed by a slight decrease in the fifth. On the other hand, the performance of AdaBoost is not satisfactory in generations two and five. The results are presented on three levels: first, using all parameters reveals that logistic regression obtains the best performance with a precision of 83.78%. Then, the results of the parameters selected in the second generation still show the logistic regression with the best precision of 84.71%. Finally, the results of the parameters chosen in the second generation place random forest in the lead with a score of 74.12%.

Publisher

MDPI AG

Reference26 articles.

1. (2023, October 20). Cocoa Bean Production Ivory Coast 2022/2023. Available online: https://www.statista.com/statistics/497838/production-of-cocoa-beans-in-ivory-coast/.

2. (2023, October 20). UNSDG|Sustainable Cocoa Farming in Côte d’Ivoire: UN Deputy Chief Notes Significant Progress and Calls for Greater International Support. Available online: https://unsdg.un.org/latest/stories/sustainable-cocoa-farming-cote-divoire-un-deputy-chief-notes-significant-progress.

3. Cocoa Bean and Cocoa Bean Products Quality Evaluation by NIR Spectroscopy and Chemometrics: A Review;Teye;Infrared Phys. Technol.,2020

4. Santika, G.D., Wulandari, D.A.R., and Dewi, F. (2018, January 2–4). Quality Assessment Level of Quality of Cocoa Beans Export Quality Using Hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Algorithm. Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, Indonesia.

5. An Intelligent Cocoa Quality Testing Framework Based on Deep Learning Techniques;Essah;Meas. Sens.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3