Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity

Author:

Joseph SeenaORCID,Olugbara Oludayo O.ORCID

Abstract

Salient object detection represents a novel preprocessing stage of many practical image applications in the discipline of computer vision. Saliency detection is generally a complex process to copycat the human vision system in the processing of color images. It is a convoluted process because of the existence of countless properties inherent in color images that can hamper performance. Due to diversified color image properties, a method that is appropriate for one category of images may not necessarily be suitable for others. The selection of image abstraction is a decisive preprocessing step in saliency computation and region-based image abstraction has become popular because of its computational efficiency and robustness. However, the performances of the existing region-based salient object detection methods are extremely hooked on the selection of an optimal region granularity. The incorrect selection of region granularity is potentially prone to under- or over-segmentation of color images, which can lead to a non-uniform highlighting of salient objects. In this study, the method of color histogram clustering was utilized to automatically determine suitable homogenous regions in an image. Region saliency score was computed as a function of color contrast, contrast ratio, spatial feature, and center prior. Morphological operations were ultimately performed to eliminate the undesirable artifacts that may be present at the saliency detection stage. Thus, we have introduced a novel, simple, robust, and computationally efficient color histogram clustering method that agglutinates color contrast, contrast ratio, spatial feature, and center prior for detecting salient objects in color images. Experimental validation with different categories of images selected from eight benchmarked corpora has indicated that the proposed method outperforms 30 bottom-up non-deep learning and seven top-down deep learning salient object detection methods based on the standard performance metrics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3