Improved Color Mapping Methods for Multiband Nighttime Image Fusion

Author:

Hogervorst Maarten,Toet AlexanderORCID

Abstract

Previously, we presented two color mapping methods for the application of daytime colors to fused nighttime (e.g., intensified and longwave infrared or thermal (LWIR)) imagery. These mappings not only impart a natural daylight color appearance to multiband nighttime images but also enhance their contrast and the visibility of otherwise obscured details. As a result, it has been shown that these colorizing methods lead to an increased ease of interpretation, better discrimination and identification of materials, faster reaction times and ultimately improved situational awareness. A crucial step in the proposed coloring process is the choice of a suitable color mapping scheme. When both daytime color images and multiband sensor images of the same scene are available, the color mapping can be derived from matching image samples (i.e., by relating color values to sensor output signal intensities in a sample-based approach). When no exact matching reference images are available, the color transformation can be derived from the first-order statistical properties of the reference image and the multiband sensor image. In the current study, we investigated new color fusion schemes that combine the advantages of both methods (i.e., the efficiency and color constancy of the sample-based method with the ability of the statistical method to use the image of a different but somewhat similar scene as a reference image), using the correspondence between multiband sensor values and daytime colors (sample-based method) in a smooth transformation (statistical method). We designed and evaluated three new fusion schemes that focus on (i) a closer match with the daytime luminances; (ii) an improved saliency of hot targets; and (iii) an improved discriminability of materials. We performed both qualitative and quantitative analyses to assess the weak and strong points of all methods.

Funder

Air Force Office of Scientific Research, Air Force Material Command, USAF

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Reference84 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Fusion Based on Bioinspired Rattlesnake Visual Mechanism Under Lighting Environments of Day and Night Two Levels;Journal of Bionic Engineering;2024-04-02

2. Image fusion of spatial inconsistency IR dual-band detector;AOPC 2022: Optical Sensing, Imaging, and Display Technology;2023-01-23

3. Ground-level temperature-emissivity-based contrast enhancement with uncooled multiband LWIR cameras;Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXXII;2021-04-12

4. Other Image Color Features;Image Color Feature Extraction Techniques;2020-06-04

5. Integrating model- and data-driven methods for synchronous adaptive multi-band image fusion;Information Fusion;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3